The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.

نویسندگان

  • Murat Oz
  • Keun-Hang Yang
  • Meral Dinc
  • Toni S Shippenberg
چکیده

The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. Coapplication of anandamide with the cannabinoid type 1 (CB(1)) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) (1 microM), the CB(2) receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 microM), or pertussis toxin (5 microg/ml) did not alter the inhibitory effect of anandamide, suggesting that known cannabinoid receptors are not involved in anandamide inhibition of K(+) currents. Similarly, neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor indomethacin (5 microM) affected anandamide inhibition of K(+) currents, suggesting that the effects of anandamide are not mediated by its metabolic products. In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hormone-regulated K+ channels in follicle-enclosed oocytes are activated by vasorelaxing K+ channel openers and blocked by antidiabetic sulfonylureas.

Follicular oocytes from Xenopus laevis contain K+ channels activated by members of the recently recognized class of vasorelaxants that include cromakalim and pinacidil and blocked by antidiabetic sulfonylureas, such as glibenclamide. These channels are situated on the adherent follicular cells and are not present in denuded oocytes. Cromakalim-activated K+ channels are also activated by increas...

متن کامل

The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of...

متن کامل

Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors.

Anandamide (AEA) and delta9-tetrahydrocannabinol (THC) are endogenous and exogenous ligands, respectively, for cannabinoid receptors. Whereas most of the pharmacological actions of cannabinoids are mediated by CB1 receptors, there is also evidence that these compounds can produce effects that are not mediated by the activation of identified cannabinoid receptors. Here, we report that THC and AE...

متن کامل

Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes

Voltage-clamp techniques were used to study the membrane currents elicited by follicle stimulating hormone (FSH) and acetylcholine (ACh) in follicle-enclosed oocytes of Xenopus laevis (follicles). Both agonists caused complex responses that were more evident when the follicles were in hypotonic Ringer solution (HR; 190.4 mosM). In this medium, currents activated by FSH regularly showed three ph...

متن کامل

Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system.

In this study, we focused on the pharmacological characterization of cannabinoid receptor coupling to G protein-gated inwardly rectifying potassium (GIRK) channels. Cannabinoids were tested on Xenopus laevis oocytes coexpressing the CB(1) receptor and GIRK1 and GIRK4 channels (CB(1)/GIRK1/4) or the CB(2) receptor and GIRK1/4 channels (CB(2)/GIRK1/4). WIN 55,212-2 enhanced currents carried by GI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 323 2  شماره 

صفحات  -

تاریخ انتشار 2007